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Abstract 

 
With the rapid development of electric vehicles (EVs) industry, EV charging service becomes 
more and more important. Especially, in the case of suddenly drop of air temperature or open 
holidays that large-scale EVs seeking for charging devices (CDs) in a short time. In such 
scenario, inefficient EV charging scheduling algorithm might lead to a bad service quality, for 
example, long queueing times for EVs and unreasonable idling time for charging devices. To 
deal with this issue, this paper propose a Deep-Q-Network (DQN) based two-stage scheduling 
method for the large-scale EVs charging service. Fine-grained states with two delicate neural 
networks are proposed to optimize the sequencing of EVs and charging station (CS) 
arrangement. Two efficient algorithms are presented to obtain the optimal EVs charging 
scheduling scheme for large-scale EVs charging demand. Three case studies show the 
superiority of our proposal, in terms of a high service quality (minimized average queuing time 
of EVs and maximized charging performance at both EV and CS sides) and achieve greater 
scheduling efficiency. The code and data are available at THE CODE AND DATA. 
 
 
Keywords: charging service, cyber-physical system, deep reinforcement learning, EV 
charging scheduling algorithm, surge demands. 
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1. Nomenclature 
EVi the ith EV (electric vehicle) 
CSj the jth CS (charging station) 
CD (k, j) the kth CD (charging device) of CSj 

ot (k, j) the occupied time for CD (k, j) 

qtijk the queueing time of EVi at CD (k, j) 

itjk the idling time of CD (k, j) 

AQT the list contains the average queueing time of EVs in each CS 
AIT the list contains the average idling time of EVs in each CS 
CNS the list contains the EV amount queueing at each CS 
Nev the total number of currently schedulable EV  
Ncs the total number of available CS 

 

2. Introduction 

The EVs have increased rapidly with the advantage of environmentally friendly and cost 
saving [1]. However, lack of charging infrastructure is one of the roadblocks for promoting 
the penetration of EV [2]. In some scenarios, such as extremely cold weather and holidays, it 
is a common phenomenon that the large-scale EVs charging request increasing suddenly [3]. 
The unreasonable EVs charging scheduling strategy might cause a long queueing time [4]. 
Therefore, dealing with the large-scale EVs charging scheduling requests properly is still a 
critical question need to be solved for improving the quality of EV charging service 
(minimizing average queuing time of EVs and maximizing charging performance at both EV 
and CS sides). 

Currently, many studies are conducted for solving the EVs charging scheduling problem. 
Some of them introduced the global aggregator (GA) based scheduling strategies [5]. In study 
[6], for example, a GA-based pre-empted EVs charging position reserving algorithm was 
proposed for a better quality of EV charging service. The GA, as a third-party to cooperate 
with CSs and EVs, offers scheduling information from a global perspective under large-scale 
EV charging requests scenarios. Some studies have proposed the heuristic algorithm-based 
EV charging scheduling method to deal with the large-scale surging requests according to the 
information offered by GA, e.g., genetic algorithm [7-9], PSO (particle swarm optimization) 
[10-12], artificial bee colony [13]. However, these methods are easily trapped into local 
optimization and need more time to get a suboptimal solution under a large solution space of 
problems with surge charging demand.  

For avoiding the drawbacks and generating scheduling plan according to the dynamically 
changing environment, other studies were devoted to exploring different scheduling 
approaches based on reinforcement learning (RL). Quite a few researchers use reinforcement 
learning (RL), or deep reinforcement learning (DRL) based algorithm to solve the problem of 
EV charging scheduling from different perspective. Some studies apply DRL-based 
algorithms for minimizing charging cost of EV users [14], increasing profit of charging service 
providers [15], or balancing electric load profiles [16, 17]. Obviously, the previous studies 
approached their optimizing target based on the historical data, i.e., time series, it difficult to 
cope with the surging EV charging scheduling problem due to the models is not easily to be 
applied in the situation with large-scale action space and high real-time demand. For coupling 
with the large -scale charging demands and getting a better quality of service (the low average 
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queuing time of EV and low average idling time of charging devices), existing RL based 
algorithms have common difficulties, mainly including insufficient states, unreasonable 
designs of RL models as well as lacking effective learning algorithms, in solving problems 
with a high-dimensional action space and state space. For overcoming these difficulties, 
creating a suitable RL based method for surge charging demands must be undertaken firstly. 
The definition for state of this method should be characterized by different levels of service 
qualities and may consider both EVs and CSs sides. Meanwhile, designs of RL model should 
be based on scheduling processes. In addition, training algorithms should pay great attention 
to details of scheduling strategies while avoiding trapped into local optimal solution. 

Despite the importance of providing a practical RL based method for the large-scale EVs 
charging scheduling problem from a global perspective, the current literature only refers to 
theoretical methods to gain strategic, marketing, or operational insights. Currently there is no 
comprehensive RL based models that solves the large-scale EVs charging scheduling in the 
literature. The lack of literature precedent raises three questions:  

1. How to define fine-grained states that consider both EVs and CSs sides? 
2. How to design RL models with scheduling processes? 
3. What is the key to gain the optimal solution with a high-dimensional action space without 

trapping into local optimal solution? 
For solving these questions, we propose an innovative DQN-based two stage scheduling 

method for enhancing the service quality of large-scale EVs charging scheduling. Fine-grained 
states that describe both EVs and CSs sides are defended. Two networks based on the 
scheduling process are designed and fine-tunning algorithms are presented to improve the 
effectiveness and efficiency. With four well-designed experiments, our study is testified that 
could generate a better charging scheduling plan under surge charging scheduling demands.  
Furthermore, the proposed deep reinforcement learning based technology roadmap can be 
extended to other problems with large action space and complex state representation.  

The rest of this paper is organized as follows. "Related Work" investigates the research 
results related to EV charging scheduling problems. "Problem Definition" describes the 
concepts involved and introduces the mathematical model of optimization objective. "DQN-
based Two-stage Scheduling Method" section details proposed method. Finally, the "Case 
Studies" section compares and analyzes the performance of the proposed method with the 
current major algorithms and proves its superiority. "Conclusion" concludes this algorithm 
and gives an outlook on possible future research directions. 

3. Related Work 
Using RL based methods to solve a problem that arranges each EV to an appropriate charging 
station is difficult because of the reward setting, complex states defining, and models 
designing. While many studies still focus on employing RL to solve EVs charging scheduling 
due to its ability that could gain an optimal action strategy from the action space [18].  

The reasonable reward is of great importance for gaining the target scheduling goal. The 
designing of reward is varying for different research with different EVs charging scheduling 
targets. The reward can be the queueing time minimizing, charging efficiency improvement 
by reducing average idling time of charging devices and get more profits for charging stations 
[19, 20]. 
    Generally, the designing of state depends on scheduling goals. States used in studies include 
the waiting time [21], charging price [20], traffic condition, battery SOC [22], EVs locations 
[19], charging price [23], degrees of user satisfaction and etc. For increasing individual 
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satisfaction, energy consumption levels or the expected charging duration are also considered 
when designing state representations. However, it is still lacking appropriate state 
representations for the large-scale EVs charging scheduling problem to gain a better charging 
effectiveness and efficiency [24]. 

Based on warily designed states, an appropriate action for selecting EVs to be charged or 
scheduling an EV to a CS can be decided by the models. The form of a model of RL is a single 
deep neural network or combination of some interactable neural networks. For some scenarios 
with simple discrete action spaces, a model can be a table that contains state-action pairs with 
their values [25]. However, this kind of table is not suitable for real world applications with a 
large state space and high-dimensional action space. Some studies proposed more 
sophisticated models, such as combining DDPG with DQN, to predict the action value after 
extracting state features by LSTM due to the high complexity of state-action mapping [26]. 
Nevertheless, these sophisticated models also cannot gain the optimal solution efficiently due 
to the large-scale of mapping spaces. Decomposition the action space and design suitable  
model based on the scheduling process might be a promising way to deal with the large-scale 
action space. While existing methods pay little attention to this.  

In summary, most aforementioned studies have only dealt with charging scheduling 
problem with the small-scale of EVs and solved to the low-dimensional state spaces. Few 
studies focus on the large-scale EVs charging scheduling problem for decreasing queueing 
time and idling time for both EVs and CSs to improve the service quality. Therefore, an 
efficiency scheduling method for the surge large-scale EVs scenarios is needed. For solving 
this problem, the RL based method should be proposed with: 

1) fine-grained states that consider both EVs and CSs sides.  
2) global optimizing target for improving QoS (minimizing average queuing time of EVs 

and maximizing charging performance at both EV and CS sides) with the suitable DRL-
models.  

3) action selecting mechanism with fine-tunning algorithms to generate appropriate EV 
scheduling strategy. 

4. Problem Definition 
Our proposal focuses on offering a charging scheduling strategy with high charging service 
quality (minimized average queuing time of EVs and maximized charging performance at both 
EV and CS sides) for the large-scale EVs. For describing the proposed method clearly, the 
mathematical background is shown as below. 

4.1 Entity Definition 
The entities that in proposed algorithm are EV, CS, CD and GA. As a CPS (cyber physical 
system), global aggregator is a third-party platform for offering real-time traffic, EV, and CS 
information according to the interfaces of EV industry, charging service providers and map 
companies. The definition of EV, CS and CD are summarized as Table 1. 
 

Table 1. Definition of entities 
Item Definition 
EVi <i, eloi, ltdi, cti> 
CSj <j, cloj, dnj> 

CD (k, j) <j, k, ot (k, j)> 
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4.2 Assumption 
The large-scale EVs charging scheduling request occurs in a city scenario with a complex 
traffic situation. Without the loss of generality, the location of EVs make the charging request 
is randomly around the charging stations. At same time, the total amount of EVs is not 
predefined as well as K initial CSs are available. All the entity defined in 4.1 can communicate 
with GA in real-time. In addition, the priority of EVs is not pre-defined and all details of the 
scheduling plan is generated by algorithms. 

4.3 Mathematical Model 
Our proposal focuses on offering a charging scheduling plan with a high service quality for 
the large-scale EVs. To describe the proposed method clearly, the mathematical background 
is shown as below. 
The problem is defined in a discrete action space and has a discrete time setting. For the 
given EVi, CSj, the travel time from EVi to CSj is defined as (1): 

( , )i j
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i

dtt
vα
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where α∈[0, 1] is a factor shows the congestion level, it is determined according to the real-
time road congestion level and acquired from the service interface of map companies. The α 
is bigger when the traffic situation is better otherwise the traffic situation is worse. When EVi 
is scheduled at CD (k, j), the expected queueing time of EVi and the idling time of CD (k, j) can be 
updated as (2) and (3): 
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After a charging device CD (k, j) allocated to a EVi, the occupied time ot (k, j) can be update as 
(4): 
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The goal of our proposal is to find a scheduling plan with minimized average queueing time 
of EVs and average idling time of CSs. Because of the complexity of the goal (optimizing the 
average queueing time and average idling time at same time), we convert the optimizing object 
into a single-object optimization problem. The optimization objective can be described as (5): 
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5. DQN-based Two-stage Scheduling Method 
The traditional DQN-algorithm have barriers on convergence speed when solving problems 
with a high-dimensional action space. To deal with this problem, a fine-grained state 
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representation and two independent neural networks were designed to select an appropriate 
CS for EV. 

5.1 State representation 
State designing is of great importance for DRL. From the perspective of the optimization target 
of the large-scale EVs charging scheduling problem, two kinds of states from both EV and CS 
sides were designed to represent the global information of EVs and CSs. 
    For any schedulable EVi, its feature SEi can be formed as follows: 
                                             [ _ _ ( ), , ]i i iSE dis to cs i ct ltd=                                                  (6) 
Let L denotes the dimension of SEi, then the feature of charging stations SC (which shape is 
L × 4) can be depicted as follows: 
                                          [ , , , _ ]SC AQT AIT CNS occup T=                                           (7) 
The global state representation of all schedulable EVs can be formed as follows by combining 
with the SC, SEi: 
                                             [ ]1

( 4)ev
N

L N
SEV SE SE SC

× ×
= 


                                    (8) 

After an EV numbered with k is selected as the optimal selection, the state for EVk to select an 
appropriate charging station which can be describe as follows: 

                                                            
(5 )

k

L

SE
SCS

SC
×

 
=  
 

                                           (9) 

5.2 Structure of Neural Network 
Table 2. Structure of proposed neural network 

Parts Layers Adopt 
by 

Layers 
Abbreviation 

Input data 
shape 

The EV 
Selecting 

Model 

conv layer with kernel size = (8×8) relu EC1 (Nev+4) ×L 
conv layer with kernel size = (4×4) relu EC2 - 
conv layer with kernel size = (2×2) relu EC3 - 

fully connected layer with nodes = Ke relu6 EF1 Ke 
fully connected layer with nodes = Ke relu6 EF2 Ke 
fully connected layer with nodes = Nev relu6 EF3 Nev 
fully connected layer with nodes = Nev softmax EF4 Nev 

The CS 
Selecting 

Model 

conv layer with kernel size = (3×6) relu CC1 5×L 
conv layer with kernel size = (2×4) relu CC2 - 
conv layer with kernel size = (2×4) relu CC3 - 

fully connected layer with nodes = Kc relu CF1 Kc 
fully connected layer with nodes = Kc relu CF2 Kc 
fully connected layer with nodes = Ncs relu CF3 Ncs 

 
For solving the problem on high dimension (in our proposal, we found that fewer studies have 
been conducted specifically for the scenario where the number of EVs is much larger than the 
number of available charging stations. Based on this fact, the charging scheduling problem 
when the amount of the EVs is larger than the one-time simultaneous charging capacity, i.e., 
the number of charging device, of all the charging stations is considered as a large-scale EV 
scheduling problem in this study. Relevant details about the data are presented later in the 
experimental stage) of action space for the large-scale EVs charging scheduling, the two 
interactable neural networks were designed for the EVs selecting and CS assignment. The 
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models are designed to mapping the state-action pair to a Q-value which could help EV/CS 
selecting. As shown in the Table 2, the state SEV is input into the convolutional layer (EC1, 
EC2, EC3) where each convolutional layer was adopted by a rectified linear unit (relu). A 
feature map (with Ke features) extracted by convolutional layer is then fed into the fully 
connect layers (EF1, EF2, EF3) to select an optimal EV. Therein, the size of fully connected 
layer depends on the real problem. After an optimal EVk was selected, SCS is constructed as 
an input of convolutional layer CC1. Then, the appropriate charging station can be selected by 
the Q-values for CS-selection acquired from fully connected layer (CF1, CF2, CF3) according 
to the feature map (with Kc features) generated by conv layer (CC1, CC2, CC3). For improving 
the ability that fitting the Q-function for EV and CS, the relu6 functions are added into each 
two adjacent fully connect layers. 
    Both neural networks for selecting EVs and the corresponding appropriate charging stations 
have a fully connected layer part, and the number of network nodes is designed to consider the 
model's feature extraction of the input states as well as the number of objects (EVs or CSs) to 
be selected in the actual application scenario. Considering the complexity of the problem, 
although a larger number of nodes in the intermediate layer would result in a better fit of the 
model to the problem, the size of the nodes in the intermediate part of the fully connected layer 
was limited as the same nodes with the dimension of input feature in order to make the model 
more generalizable, and its validity was fully verified in the experiments. 

5.3 Training Algorithm 

 
Fig. 1. The flowchart of our algorithm 

 
With the two models (the EV selecting model and the CS selecting model), an EV can be 
selected according to the Q-value of EV (weighted value of average queueing time and average 
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idling time on currently scheduled EV discounted by γ) predicted by the EV-selecting network 
and an appropriate CS for EV can be selected according to the Q-value of CS (expected 
queueing time of EV at target CS) predicted by the CS-selecting network. The update process 
can be conducted according to the difference between the output of network for CS (or EV) 
and the desired Q-value (weighted Q-value) returned from the environment. 

As shown in the Fig. 1, the training of proposed model has two main process includes 
pretraining stage and training stage. Firstly, the models are pre-trained based on well-
performed experience collected and sampled from interacting with environment randomly. 
Secondly, a training process to explore the solution space by linear reducing ε-greedy method 
was introduced for a better performance on EV charging scheduling. 

For the proposed models (EV-model and CS-model), the pre-train stage collect experience 
from interacting with environment for IS (a constant) times to train EV-model and CS-model 
separately. Then, the EV-model was trained by experience stored in ERB (the replay buffer 
for storing the experiences to train the EV-model) for PTS times and CS-model was trained by 
experience stored in CRB (the replay buffer for storing the experiences to train the CS-model) 
for TS times. The pseudo-code for pre-training and training the models is summarized as 
Algorithm 1. 

 
Algorithm 1: The training of the proposed models 
INPUT: γ, IS, TS, PTS, ERB, CRB, un-trained models 
OUTPUT: the model that can generate the best scheduling plan 
PRE-TRAINING STAGE 
1   LOOP random-step from 0 to IS: 
1.        generate a trajectory randomly 
2.    IF all episodes are finished collecting: 
4.           filter out the first 30% of trajectories with lower AQT 
5.           store experience into ERB and CRB 
6   LOOP pre-training-step from 0 to PTS: 
7.           pre-training the model 
TRAINING STAGE 
8. LOOP i from 0 to TS:            
9.     LOOP step from 0 to Nev: 
10.         select action aet and act for EV and CS according to Algorithm 2 separately.  

at time step t 
11.         execute the actions 
12.         obtain the reward and next state from environment for EV and CS separately 
13.         store the experience into ERB and CRB separately  
14.     LOOP training-step from 0 to TS: 
15.         training the model 
 
Generally, selecting EV and CS with the highest Q-value in every step might lead to a bad 

scheduling performance while the models are not convergence. It might introduce worse 
experience into replay buffer. For solving this problem, a ε-greedy strategy with linear 
decreased ε is introduced. To avoid introducing poor action selection by ε-greedy strategy, a 
local queuing order fine-tunning scheme is introduced to offset the randomness brought by the 
original exploration method. Let qn (k, j) denotes the number of EVs, the Algorithm 2 shows the 
action selecting algorithm with fine tuning. 
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Algorithm 2: The fine tuning of scheduling consequence 
INPUT: EV state, CS state, ε ∈ [0, 1], EV model, CS model, random variable e, c 
between 0 and 1 
OUTPUT: optimal selection for EV and CS 
DEFINE: Mi = dis (j, k) + CTi (if EVi scheduled at CD (j, k)) 
1.   calculate Q-values for all not-scheduled EVs according to EV-state 
2.   IF e < ε: 

Algorithm 2 
3.       select EV randomly 
4.   ELSE: 
5.       select the EV with optimal Q-value 
6.   construct CS-state 
7.   calculate Q-value for all CSs according to CS-state based on the CS-selecting model 
8.   IF e < ε: 
9.      select CS randomly 
10. ELSE: 
11.    select CS with optimal Q-value 
12. scheduling the selected EV to the selected CS  
FINE-TUNNING STGAE 
13. IF all EVs are scheduled: 
14.     FOR j in range 0…Ncs: 
16.        FOR k in range 0…number of available charging device of CSj: 
17.              move EVs at device k of CSj to set S and calculate M value for each EV 
18.              FOR i in range 0… (the number of EVs scheduled at CD (k, j)): 
19.                     select EVi with minimum Mi and schedule EVi to CD (k, j) 
20.                     remove EVi from S and update M-value for each EV in S 

 

6. Case Studies 

6.1 Yardstick and Dataset 
All experiments are implemented by using PyCharm Integrated Development Environment 
version 2019.1.1 with Python 3.7 on a PC: 11th Gen Intel(R) Core (TM) i7-11800H @ 
2.30GHz with 32G memory and Nvidia RTX 3060 with 6G memory. To investigate the 
performance of the proposed method, three case studies are designed based on data collected 
from a real-world dataset from a private EVs charging service. In our experiments, a relatively 
bad traffic situation is considered, the congestion level parameter α is set to be 1.  

The dataset (described in Table 3) can be downloaded from (data source). It can be divided 
into three parts, which are the EV information, CS information and charging price information. 
The EV information includes all of the details for EVs, which are the initial coordination, the 
left traveling distance, and the expected charging time of each EVs. The details about CS 
information includes the coordination of each available charging stations and the charging 
price per hour. 
 
 
 
 

https://github.com/paperscodeyouneed/A-DQN-based-Two-Stage-Large-Scale-EV-Charging-Scheduling/tree/main/A%20DQN-based%20Two-stage%20Scheduling%20Method%20for%20Large-Scale%20EVs%20Charging%20Service/Data
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Table 3. Details of dataset 
Item Value 

The number of CSs 34 
The charging device of each CS 5 
The charging voltage of charging device 500V-700V 
The total number of EVs that are intending to use the charging device in a 
certain duration 

1000 

The number of EVs that can arrive the nearest CS with its remaining battery 
power 

899 

The number of EVs that use the batteries exchanging service 101 
 
The entities in the experiments are 1000 EVs and 34 CSs. Each CS has 5 high voltage 

available charging devices and the EVs are randomly located around the charging stations. In 
our research, 101 EVs cannot be scheduled due to the extremely low battery, which need to 
use the battery exchanging service. Only 899 EVs could reach at least one charging station 
with their remaining capacity of batteries. 

6.2 Experiment Setting 
We designed three case studies for fully analyzing our proposal. Considering the fact that the 
amount of CS is 34, the L is set to be 34+2 (therein, the “34+2” denotes the distance between 
EVi and all CSs (34 CSs), expected charging time and left traveling distance). 

In case study I, the effect of reward designing on charging scheduling quality was investi-
gated.  

In case study II, we compared the ability on solution space exploring between the proposed 
algorithm and EDA-GA based EVs scheduling algorithm with 200 and 625 iterations. The 
superiority of scheduling order fine-tuning is proved by ablation experiments. And the lower 
learning rate is better for searching optimal scheduling scheme is then discussed. 

In case study III, the proposed large-scale EVs charging scheduling algorithm is compared 
to the algorithms in the literature. Four groups of experiments were conducted. Each group of 
experiments are described as follows.  

The first group contains the experiments of customer-oriented FCFS algorithm where the 
customers select the nearest CS and supplier-oriented greedy scheduling algorithm which is 
maximizing supplier revenue.  

The second group contains genetic algorithm-based random FCFS algorithm, genetic 
algorithm based random scheduling algorithm and genetic algorithm-based greedy EV 
charging scheduling algorithm with relative low queueing time and idling time.  

The third group contains EDA-GA based genetic algorithm under 200 and 625 iterations. 
The last group of experiment contains DRL-based algorithms including traditional DQN, 

DDPG, A2C, and CDDPG.  

6.3 Case Study I 
This section, A group of the control experiments based on different reward settings are 
conducted. The experiments investigate the effect of the designing for reward on the quality 
of EV charging scheduling service.  
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Table 4. Scheduling results based on different rewards setting 

EV-Target CS-Target best queueing 
time 

best idling 
time 

0.5× RAW+0.5×MNCSD (3) csval+1.5×CENk 26.330 7.087 
0.5× RAW+0.5×MNCSD (5) csval+1.5×CENk 42.273 4.357 
0.5× RAW+0.5×MNCSD (2) csval+1.5×CENk 25.779 7.148 
0.5× RAW+0.5×MNCSD (2) csval+2.0×CENk 27.901 8.330 
0.5× RAW+0.5×MNCSD(3) csval+2.5×CENk 21.300 4.930 

 
The different reward settings and the scheduling consequences are shown in Table 4, where 

the MNCSD(k) is the average distance from an EV to its nearest k charging station, the RAW 
is a weighted value of sum(AQT)/Nev (sum(AQT) denoted the summation of queueing time for 
all EVs) and AIT/Nev (sum(AIT) denoted the summation of idling time for all EVs) of EVs (in 
our experiment setting, the weight of sum(AQT)/Nev is 0.8 and the weight of sum(AIT)/Nev is 
0.2), the CENk used to represent the congest degree of charging station CSk and the csval is the 
Q-value predicted by CS-selecting network. A conclusion can be drawn from Table 4 that the 
quality of large-scale EVs charging scheduling service is affected by expected queueing and 
crowding degree of target charging station. It can obtain a better charging service if an EV is 
scheduled at a charging station with low congestion level. On another hand, it could obtain a 
shorter average queueing time and average idling time when an EV with the shorter distance 
to nearby charging station is scheduled firstly. 

6.4 Case Study II 
To show the superiority on EV charging scheduling performance of our proposal, a group of 
comparing experiments are conducted.  

Firstly, the advantage of scheduling consequence fine tuning method that could avoid local 
optimal solutions is proved. 

 

 
Fig. 2. The comparison of AQT 
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Fig. 3. The comparison of AIT 

 
 

Secondly, the comparison of the scheduling consequences between other well-performed 
method and our proposal is conducted. The consequences show the effectiveness of our 
proposal on action space exploring. 

For investigating the advantages of scheduling consequences fine-tunning method, the 
ablation experiments are conducted. Fig. 2 and Fig. 3 show the comparison of AQT and AIT 
before and after the fine tuning. 

As we can conclude from the figures, the scheduling consequences after fine-tuning is 
relatively better than before. With the AQT of all EV decreasing, the AIT for charging stations 
also shows a downward trend. At the same time, it can also be seen that while the average 
queue time gradually decreases, the average idle time shows frequent fluctuations. This 
indicates that the queueing order corresponding to the electric vehicles that queuing in front 
of each charging device is constantly changing in the exploring stage. Furthermore, the 
experimental results can also demonstrate that the control group with fine-tuning algorithms 
has stronger ability in generating the optimal solution for electric vehicles. This fully proves 
that our proposed queuing order fine-tuning method has played a promoting role in the 
optimization process of the model in the solution space. 
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Fig. 4. The exploring of solution space in our proposal 

 
Based on the scheduling consequences fine-tuning, the overall EV scheduling performance 

in solution space exploration of our proposal is shown in the Fig. 4. As shown in the figure, 
the proposed algorithm can be divided in to two main parts which are the pre-training stage 
(blue dots) and the solution space exploring stage (yellow dots). At the beginning of the pre-
training stage, the solutions are relatively scattered in the left-top of the figure because of the 
higher ε and not converged models. With the iteration increasing, the more well-performed 
experiences are collected and used to train the models and the founded solutions began to 
concentrate (the part with queuing time around 30. However, there is few solutions (blue point) 
acquired in pre-train stage have a higher performance which might be due to the randomness 
of ε-greedy method. At the training stage, it is clearly that the searching ability to find better 
solution is enhancing as the iteration step increasing. At the beginning of the training stage, it 
is relatively slow (it takes around 30 sampling steps) to find a better solution due to the higher 
ε. With the linear ε decreasing strategy, the scheduling plan with better performance (lower 
average queuing time for EVs and lower idling time for charging stations) can be generated 
by the proposed algorithm. In addition, it can be concluded from Fig. 4 and Fig. 5 that 
comparing to the EDA-GA methods, the proposed algorithm has more stable property to 
exploring the solution space. The better solution can be generated with more iterations. For 
EDA-GA methods, however, the inner mechanism might be leading to a worse performance 
on EV charging scheduling with more iterations (as shown in Fig. 5).  
Fig. 5 illustrates the exploration process of the control group in the solution space. Comparing 
with our proposal, the control group algorithm (the EDA-GA) can find relatively excellent 
solutions at the initial stage. For example, the initialized EV charging scheduling strategy 
given by the control group achieves a near-optimal solution. However, in the process of 
continuous and deeper exploration, both sets of experiments (EDA-GA with 125 and 625 
iterations) in the control group show some stagnant characteristics, i.e., the method does not 
give a better exploration of the solution space. The relative dispersion of the locations of the 
solutions found in the solution space by our proposed method compared to the results in Fig. 
5 shows that the EDA-GA based method has some shortcomings in the optimization 
(exploration of the solution space) capability. This also confirms that our proposal has the 
characteristic of being able to explore the solution space well. 
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Fig. 5. The exploration of EDA-GA 

 

From Fig. 6, it can be concluded that in the early stage of model training, the low learning 
rate leads to a slow fitting to the action value function, and the efficiency of EV charging 
scheduling tends to be consistent with its control experiment with learning rate 0.001. 
However, as the continues to decrease (sampling step 40-50), the difference between the two 
in terms of scheduling results starts to become larger. We suppose that this is because at the 
later stage of the exploration, smaller ε tends might introduce a less randomness while 
selecting an action, and the model training for the predicting of action value is mainly 
determined by the learning rate. Since the model involves many model parameters, a higher 
learning rate may, to some extent, result in ignoring some solutions in the solution space that 
are more suitable for the actual problem, which making the model easy to converge to 
suboptimal solutions. 

 
Fig. 6. The comparison of different learning rate 
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6.5 Case Study III 
To describe the superiority of the proposed algorithm, our best scheduling consequence 
(average queueing time = 21.300 and average idling time = 4.930) were compared to other 
algorithms with currently well results for EVs charging scheduling under the same large-scale 
EVs charging scheduling environment. The result is shown as Table 5.  
 

Table 5. Scheduling results based on different scheduling algorithms 

Classifications No. Algorithm Iteration 
number 

average 
idling 
time 

average 
queuein
g time 

time 
consumed 
(seconds) 

dispatching rule 1 
customer oriented 

FCFS 
 

- 3.00 80.80 0.15 

greedy based 
2 supplier oriented 

greedy scheduling - 1.26 77.10 0.17 

3 genetic based 
random FCFS 200 12.30 35.10 411.50 

genetic based 

4 
genetic based 

random 
scheduling 

200 8.90 31.80 513.00 

5 

genetic based 
greedy EVs 

charging 
scheduling 

200 4.16 25.10 519.9 

EDA-based 

6 
EDA-GA based 

genetic. 
algorithm 

200 3.00 21.60 1195.0 

7 
EDA-GA based 

genetic. 
algorithm 

625 3.20 21.80 3235.00 

(D)RL-based 

8 
DQN-based EV 

charging 
scheduling 

- 7.34 24.98 27.14 

9 
DDPG based EV 

charging 
scheduling 

- 4.39 21.78 25.98 

10 
A2C based EV 

charging 
scheduling 

- 3.54 23.12 26.1 

11 OUR 
PROPOSAL - 4.93 21.30 30.20 

 
Comparing with the EDA-GA based large-scale EVs charging scheduling algorithm with 

625 iterations, the average queueing time is declined to 21.3 (about 2.29%). From the point of 
EVs charging service result, our method can generate the optimized scheduling strategy and 
at same time decrease the queuing time when EV users waiting for charging in front of 
charging device. On the other hand, our proposed large-scale EVs charging scheduling 
algorithm can give a suitable charging scheme in a short time compared to other algorithms 
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with similar scheduling results. Comparing with the EDA-GA based large-scale EVs charging 
scheduling algorithm with 125 iterations, the proposed algorithm can generate a charging 
scheme for surge demand in nearly 30 seconds (66.05 times faster than the compared 
algorithm). Additionally, we can draw a conclusion by analyzing Table 5. that there exists 
some difference between scheduling plan even though the scheduling service qualities are 
similar. It can be considered that there might exists more than one optimal scheduling plan 
with different scheduling order while keeping the same queueing time for the large-scale EVs 
and the idling time for charging stations due to the high dimensional action space and state 
space. By comparing the result of experiment 6 and experiment 7, the proposed algorithm can 
increase idling time while keeping queueing time at a relative low level which has a positive 
effect on relieving the discharging pressure of the charging station.  

On another hand, by comparing the performance of the well-performed DRL-based EV 
charging scheduling algorithms architectures, such as experiment 8 and experiment 9, in our 
experiment environment, it can be concluded that our proposal is well-performed on large-
scale EV charging scheduling task over the result in experiment 8 than CDDPG-based 
algorithm. In addition, our proposal enhanced the performance of traditional DQN in complex 
action space by fine-tuning the EV charging scheduling consequences as well as the well-
interacted neural network. It clearly that our proposal enhanced the performance in large-scale 
EV charging scheduling environments.  
In addition, compared to another type of reinforcement learning based method, such as A2C, 
which is an EV scheduling strategy based on the policy gradient method, our proposal is still 
slightly superior to such methods. This suggests that among large-scale EV charging 
scheduling problems, scheduling strategies are required differently at different stages, and 
adaptive strategies generated from a global perspective may be flawed under complex EV 
charging scheduling conditions. The Q-value based reinforcement learning method is able to 
adequately estimate the action state values reasonably in such scenarios, which leads to the 
reason why our proposal is better than the A2C method. 

7. Conclusion 
Given the reality that the bad service quality and low execute efficiency of current scheduling 
methods for the large-scale EVs charging, a DQN based two-stage scheduling method is 
proposed. Based on the designed fine grained state representation and two delicate neural 
networks, the ε-greedy strategy was used to effectively explore the action space. For avoiding 
the negative impact of inner randomness, training algorithms for fine-tunning networks were 
proposed. Results of comparative experiments have shown that, our method for the large-scale 
EVs charging scheduling has a positive impact on improving the quality of EVs charging 
service.  

In this work, we proposed a clear roadmap for solving complex problems by using DRL. 
We designed an architecture for solving continuous decision problem by deep reinforcement 
learning. Under this architecture, the problem with large state space and action space is solve 
with the interactable neural networks and warily designed state. In addition, our method can 
easily expand to other problems with large state action space (such as unrelated parallel 
machine scheduling, which has the similar scheduling pattern with EV charging scheduling 
problems). 

In future, the target of our research will focus on large-scale EVs charging scheduling 
problem under a more complex traffic scenario. 
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